4/11/2013
Press Release

 

James L Farrell launches his new Kindle book – GPS Made Simple

 KindleBookPic

James L Farrell, author of  GNSS Aided Navigation & Tracking & Integrated Aircraft Navigation has just launched his new book on the Amazon platform Kindle. The book is now available for Android tablets, iPads and of course Kindle Fire. The book sells for  $3.99 and available in the  Kindle Store.

 

 

Book Description

Publication Date: April 8, 2013
This presentation provides a basic understanding of GPS for those trying to learn it for the first time. Although satellite navigation now includes constellations from Europe and Asia, all have enough in common to focus on GPS for introductory discussion. Material was selected and organized with a a learner’s perspective in mind. for a “straight-to-the-point” exposition with little or no mathematics and, rather than an extensive bibliography, a few few URLs that can be followed towards a wealth of further sources for those interested.
 
 

Product Details

  • File Size: 592 KB
  • Publisher: VIGIL, Inc. (April 8, 2013)
  • Sold by: Amazon Digital Services, Inc.
  • Language: English
  • ASIN: B00CA4N4Y8
  • Text-to-Speech: Enabled
  • X-Ray: Not Enabled
  • Lending: Enabled

Avionics Commonality

A LinkedIn discussion centered on the Future Airborne Capability Environment (FACE) standard contained an important observation concerning certification.  Granted — requirements for validation, with acceptance by governing agencies, definitely are essential for safety. What follows here is advocacy for a proposed way to realize the common avionics benefits offered by FACE while retaining (and in fact, improving) the process of certification. Reasoning is based on three major items:

* CHANGE. In many respects this has necessitated improved standards. 

* HISTORY. Spectacular failures in what we have now are widely documented.

* COST. The status quo is (and, for a long time, has been) unaffordable.

In regard to the first item: the pace of change in so many areas (hardware, software, operating systems, data communication, etc., etc., etc.) — and the effects on procurement cycles — are well known. How can certification remain unchanged when nothing else does? That argument would be undercut if the process had a rock solid track record — but that theme would not be supported by the second item — history:

Myriad shortcomings of existing operational systems are so pervasive that no one is considered a “loose cannon” for openly discussing them. Any of my horror stories — too strange and too numerous to be revisited here — would be trumped anyway by a document from the government itself. GAO-08-467SP, in 2008, described outlandish cost overruns, schedule delays, and deficient technical performance in the defense industry. That 3-way combination speaks for itself. Now a significant addition: the certification process has not been at all immune to serious flaws. The first-ever certified GPS receiver is now well known to have failed spectacularly in multiple facets of integrity testing by another manufacturer. It is readily acknowledged that correction of those early problems is quite credible, but one issue is inescapable: Historical proof of flightworthiness improperly bestowed — with proprietary rights accepted for algorithms and tests –- happened,  and that was not widely known until much later.

There is still more, including integrity failure probability limits missed by orders-of-magnitude in certified GPS receivers, severe limitations of GO/NO-GO testing, and failed attempts to gain approval to set requirements for correcting those plus other deficiencies. For brevity here, those issues are covered by citing the fifth page from another related reference.

The final item is, after years of fruitless talk about cost reduction, being acknowledged — we can’t do what we’ve been doing any more.  With dollars being the ultimate driver of so many decisions, we might finally see the necessary break from ingrained habits. FACE already addresses the issues and the requisite justifications. To make it all happen, two essential ingredients are

* raw-data-across-the-board, and

* nonproprietary software, with standardization under government control.
Flight-validated algorithms already in existence can be converted (e.g., from proof-of-concept to in-flight real-time form) according to government specification, by small groups more interested in engineering than in dollars (yes, that does exist). The payoff in cost savings can be huge.

Significant momentum is evolving toward a role for Open System Architecture (OSA) applied to radar. My observations in connection with that, voiced in a short LinkedIn discussion, seem worth repeating here.

One step could add major impact to this development: Rather than position (or relative position) outputs, provide measured range, azimuth, elevation (doppler could optionally be added if applicable) on the output interface. That simple step would vastly improve effectiveness of track file maintenance. Before attempting to describe all reasons for improved performance, two obvious benefits can be identified first:
* ability to use partial information (e.g., range-only or, for passive operation, angle-only)
* proper weighting of data for updating track state estimates.
The first item is self-evident. The second arises from common-sense attachment of greater value to the most accurate information. An explanation:

One-sigma error ellipsoids for individual radar fixes are not spherical (not a beachball shape but more like a flattened beachball), even at close range. At longer distances the shape progresses from a frisbee to a pancake to a DVD. Kalman filtering has enabled us to capitalize on that feature for over a half-century. Without exploiting it, we effectively treat separate radar-derived “coordinates” by intersecting volumes in space that are common to overlapping spheres. Resulting uncertainty volume is enormously larger than it should be.

The feature just noted shows up dramatically when mixing data among multiple platforms. Consider cooperative engagement whereby participants, all tracking each other via network-transmitted GPS observations, share radar observations from an unknown non-participant. Share measurements or coordinates? No contest; multiple lines crossing from different directions can offer best (i.e., along-range) accuracies applicable in 3-D.

That fact (i.e., combining data from different sensors and different platforms further dramatizes available improvements) doesn’t diminish the basic issue; even with a time history of data from only one radar, a designer with direct measurements available — instead of, not in addition to, coordinates — can provide incomparably superior performance.

“Send Measurements not Coordinates” (1999; #66 from the “Published Articles” panel, opening with eight rock-solid reasons) was aimed at GPS rather than radar. Many of the principles are the same when mixing data with information from other platforms — and from other sensors such as GPS. There is no reason, in fact, why data from satellite navigation and radar can’t be combined in the same estimation algorithm. That practice hasn’t evolved but the historical separation of operations (e.g., navigation and surveillance), arising from old equipment limitations, should no longer be a constraint. Moreover, with focus shifted from tracking to navigation, integration with additional (e.g., inertial) data offers still more reasons for using direct measurements. Rather than loose integration, superior benefits are widely known to result as the sophistication progresses forward (tight. ultratight, and deep integration).

Further elaborations on “casting off our old habits” appear from different perspectives in various blogs, one-pagers, and a few manuscripts available at this site. If your library has a copy of GNSS Aided Navigation & Tracking  pages 203-4 show a way to implement the cooperative sharing of radar data obtained from a non-participant, among participants tracking each other via the mutual surveillance and tracking approach defined earlier in that same chapter.

Because so many operational systems (in fact, a vast majority) use reports in the form of coordinates, reiteration is warranted. The central issue is the content, not the amount, of data. Rather than coordinates, provide accurately time-stamped direct measurements with links connected to whichever platform observed the data (e.g., for satnav — pseudoranges; for radar — range, azimuth, elevation). Those links are automatically attached when Mode-S extended squiter (e.g., chosen for ADSB) is the means for conveying the data.  For message content, strictly disallow “massaging the data beyond the light of day” (e.g., by unknown processes, with uncertain timing, … ) which invariably results in enormous loss of performance in common occurrence today.

CONING in STRAPDOWN SYSTEMS

Free-inertial navigation uses accelerometers and gyros alone, unaided. For that purpose pioneers of yesteryear developed a variety of techniques, ranging from a 2-sample approach (NASA TND-5384, 1969) by Jordan to his and various others’ higher-order algorithms to reduce errors from noncommutativity of finite rotations in the presence of coning (and/or pseudoconing). The methods showed considerable insight and produced successful operation. Since it’s always good to have “another tool in the toolbox” I’ll mention here an alternative. What I describe here isn’t being used but, with today’s processing capabilities, could finally become practical. The explanation will require some background information; I’ll try to be brief.

a

A very old investigation (“Performance of Strapdown Inertial Attitude Reference Systems,” AIAA Journal of Spacecraft and Rockets, Sept 1966, pp 1340-1347) used the usual small-angle representation for attitude error expressed in the vehicle frame. With that frame rotating at a rate omega the derivative of that vector therefore contains a cross product of itself crossed with omega.  One contributor to that product is a lag effect from omega premultiplied by a diagonal matrix consisting of delays (e.g., transport lags equated to reciprocals of gyro bandwidths). Mismatch among those diagonal elements produces drift components with nonzero average, e.g., the x-component of the cross product is easily seen to be
aaaaaaaaaaa    (difference between y and z lags) times (omega_y) times (omega_z)
Even with zero-average (e.g., oscillatory) angular rates, that product has nonzero average due to rectification.  I then characterized the lags as delays from computation rather than from the gyros, with the lag differences now proportional to nonuniformities among RMS angular rate components along vehicle axes, and average products proportional to cross-correlation coefficients of the angular rate components. That was easy; I had a simple model enabling me to calculate the error due to finite gyro sampling rates producing finite rotation increments that don’t commute.

a

A theoretical model is only that until it is validated. I had to come up with a validation method with mid-1960s computational limitations. Solution came from a basic realization: performance doesn’t degrade from what’s happening but from belief in occurrences that aren’t happening. The first-ever report of coning (Goodman and Robinson, ASME Trans, June 1958) came from a gimballed platform that was believed to be stable while it was actually coning. If the true coning motion they described had been known and taken into account, then their high drift rates never would have occurred. The reason they weren’t taken into account then was narrow gimbal servo bandwidth; the gyros responded to the coning frequency but the platform servos didn’t. Now consider strapdown with the inverse problem: pseudoconing — a vehicle believed to experience coning when it isn’t. That will fall victim to the same departure of perception from reality. If you gave the same Goodman and Robinson coning motion to their strapdown gyro triad and sampled them every nanosecond, the effect from noncommutativity wouldn’t be noticeable.

a

Armed with that insight I then chose rotational dynamics with a closed form solution. Although rotations about fixed vehicle axes produced no coning, the pseudoconing was severe, with the apparent (reported-from-gyros) rotation axis changing radically within fractions of a millisecond; too fast for the 10 kHz data rate used in that computation.  The cross product formulation was then validated by making extensive sets of runs, always comparing two time histories:

* a closed form solution for a true direction cosine matrix corresponding to a vehicle experiencing a sinusoidal omega
* an apparent direction cosine matrix, obtained by brute-force but meticulous formation from processing gyro outputs at finite rates with quantization, time lags, and a wide variety of error sources.

That “bull-by-the-horns” computation allowed extended runs (up to a million attitude iterations) to be made for a wide range of angular rate frequencies, axis directions, and combinations of gyro input errors (steady, random, motion-sensitive, etc.). Deviation of apparent attitude from closed-form truth was consistently in close conformance to the analytical model, for a host of error sources. I have to admit that this “bull-by-the-horns” approach gave me an advantage of finding out answers before I understood the reasons for them. The cross-product analytical model didn’t come from my vision; it came after much head-scratching with answers computed from dozens of runs. A breakthrough came from the sensitivity, completely unanticipated, to angular acceleration about gyro output axes — clear in retrospect but not initially. After these experiences it occurred to me: if cross-axis covariances were known, the dominant contributor to errors — including noncommutativity — could be counteracted. I noted that on page 1342 of that old AIAA paper.

a

Finally I can describe the alternative means of compensating the dominant computational error. Description begins with the reason why it would be useful. Earlier I mentioned that many authors developed very good algorithms to reduce errors from noncommutativity of finite rotations in the presence of coning and/or pseudoconing. All that history, plus more detailed presentation of everything discussed here, can be found in Chapters 3 and 4 of my 1976 book plus Addendum 7.A of my 2007 book. A supreme irony upstages much of the work from those brilliant authors: without accounting for gyro frequency response characteristics, the intended benefit can be lost — or the “compensation” can even become counterproductive (Mark and Tazartes, AIAA Journal of Guidance, Control, & Dynamics, Jul-Aug 2006, pp 641-647). As if those burdens weren’t enough, the adjustment’s complexity — as shown in that paper — can be extensive. So :  that motivates usage of a simpler procedure.

 a

By now I’ve put so much explanation into preparing its description that not much more is needed to define the method. Today’s signal-processing boards enable the requisite covariances to be repetitively computed. Then just form the vector cross product already described and subtract the result from the gyro increments ahead of attitude updating. So much for coning and pseudoconing — but I’m not quite finished yet. The paper just cited leads to another consideration: even if we successfully removed all of the error theoretically arising from inexact computation, significant improvement in free-inertial performance would require more. Operation in the presence of vibrations would necessitate reduction of other motion-sensitive errors. Gyro degradations from rotations, for example, would have to be compensated — and that includes a multitude of components. For that topic you can begin with the discussion of gyro mounting misalignment following that up with the tables in Chapter 4 of my 1976 book and Addendum 4.B of my 2007 book.

LORAN REVISITED

Now that a few years have passed since the LORAN-C budget was killed, it might be a good time to revisit that decision. Unlike other decisions, this one might conceivably be undone; there hasn’t been the widespread demolition of resources (e.g., towers, transmitters) followed by restoration of sites. Something else, though, did occur: recent success achieved by cooperative effort between the Coast Guard and UrsaNav Inc.

For brevity here it suffices to make a few surface-scratching notes. The vast majority of us in the navigation community recognized the potential benefit of LORAN (and an extended form eLORAN) as a crucial backup — at extremely low cost — to be used when GPS is unavailable.  Many of us, furthermore, anxiously pressed for sanity (e.g., my “2-cents worth” written, to no avail, in 2009).

What’s different now, conceivably, is a combined effect of multiple factors:
* The USCG/UrsaNav success surpassed goals that had been stated earlier.
* Awareness of GPS vulnerability (therefore need for backup) has increased.
* Delay in follow-through (site restoration) offers the chance for a remedy.

An utterance appearing in Coordinates Magazine’s March 2012 cover story was reached from a different context, but its importance prompted me to cite it in the April 2012 cover story — and to repeat it here: “Do we really need to wait for a catastrophe before taking action against GNSS vulnerabilities?”

Once again I’m adding my voice to the chorus of those speaking out before it’s too late.

I perform functional formulations and algorithm generation plus validation for both simulation and operational purposes in system integration. Specific areas include navigation, communication, data integrity, and tracking for aerospace, applying modern estimation to data from various sources (COMM, gyros, accelerometers, GPS/GNSS, radar, optical, etc.). 

Complete Viewable & printable Resume Click Here
(opens in new window)

CHECK LIST for DESIGNERS

Questions submitted by members of various forums, understandably, frequently involve one or more of the following topics:
 * some or all facets of inertial navigation
 * means of updating and reinitializing the drifting inertial solution
 * satellite navigation (GPS/GNSS) for providilng the updates
 * other means of updating (radar, laser, optics, VOR, DME, hyperbolic, … )
 * best ways to use what’s available for various applications.
 
The pool of literature that might be offered can be vast, partly due to a vast array of operations – each with application-dependent requirements.  Finding just the relevant information from a mountain of available references can be a daunting task, especially for young designers.  I’ll try to make their search easier, by offering a list they can ask themselves early in the design process:
 * do you need a lat/lon/altitude Earth reference or just a designated point?
 * is the path determined from provisions onboard (nav) or remote (track)?
 * what’s your required accuracy for “absolute” (geolocation) position?
 * what’s your required accuracy for relative position (e.g., from a runway)?
 * do you need precise incremental position history (SAR motion compensation)?
 * do you need precise angular orientation (e.g., laser pointing)?
 * do you need precise angular rates (for image or antenna stabilization)?
 * for direction do you use a North reference or just along-track/cross-track?
 * will you have dependable access to updating information (GPS, radar, …)?
 * if not, how irregular will dynamics be over active parts of your mission?
 * if so, how irregular will the dynamics be during inter-update periods?
 * also if so, what data rate? Longest expected “blind period” between updates?
 * also if so, will measurements need averaging to meet your required accuracy?
 * also if so, how accurate are your measurements AND their time stamps?
 * also if so, can you use postprocessing or do you need everything real-time?
 * are you willing to accept partial updates (some but not all directions)?
 * do you need just position or derivatives too (velocity, acceleration)?
 * if so, how long can your dynamics be trusted to conform to model fidelity?
 * are you doing INS update (e.g., replacing acceleration with tilt states)?
 * if so, will you need to deduce drift rates – and how long will those hold?
 * do your sensors measure distances, angles, doppler, differences of those?
 * for how long does your sensor information content provide observability?
 * how’s your sensor integrity (bad readings at least detectable if present)?
 * for safety-critical operations — what are your backup provisions?
 * are you accommodating multiple modes with time-shared sensing resources?
 * do you need to perform image registration with different imaging sensors?
etc.etc. — the list goes on.  I won’t even try to claim thoroughness; you get the idea.  Designers with new tasks dumped in their lap can understandably feel overwhelmed.  Searching for references can become a trip through a maze of half-relevant sources.
 
A first step, then, is to separate the relevant (what you need) from the irrelevant (what you don’t need), instantly dismiss any thought of the latter, and do the opposite with the former (nail it).
 
Brief examples — the first two items from the above list —
 * If you just need to know your location relative to a designated point, irrespective of its latitude and lingitude — this might help.
 * If you’re tracking instead of navigating — check these out —
and one from the last item from that list —
Again, you get the idea — volumes have been written on all facets.  Many won’t apply to your immediate task; disregard those.
 
The good news is — paths to logical solutions are known and documented.  To avoid abandoning you to an enormous maze of references I’ll point out some fundamental and advanced (state-of-the-art) tracts that address all issues just cited and more.  Several blogs and short “1-pagers” will help individual designers to choose, based on their specific tasks, passages from available references.
 
Before GPS we struggled hard for accurate measurements in enough places.  That actually produced a benefit — we had to be resourceful.  My biggest challenge was to understand subjects (Kalman filtering, strapdown inertial navigation) then considered exotic.  Again a benefit; pulling information from 1950s books and papers forced me to understand, focus, and reduce concepts to whatever level became necessary.  The experience prompted me to write the first of my two books on navigation.
 
That first book has been used in myriad courses, including one currently taught by Prof. Hablani who wrote the most recent testimonial shown on that URL .
 
Some topics that earlier book explained in detail recently came up in another discussion — http://www.linkedin.com/groupAnswers?viewQuestionAndAnswers=&discussionID=44646633&gid=160643&commentID=68798460&trk=view_disc
&ut=0XsoCju0nA5B81
For example, slow (“W” radian/sec) oscillations with “W” corresponding to the Schuler period (between 83 and 84 minutes). In that case position error from accelerometer bias, propagating as (1 – cos Wt), rises much sooner than gyro drift, propagating as (t – sin Wt/W). Page 80 of that book sketches an example of behavior over a cycle.  Development offered beyond there expands as far as many analysts wish to go (other natural frequencies of error propagation, rectification of vibration-sensitive errors, etc.).
 
Not long after that first book appeared, GPS became operational — and I was a newcomer to that.  By the time I understood it there were many experts.  Once again I had to catch up, and the process was gradual.  With an exceptionally strong client interested in my inertial background, a synergism was formed. That led to a flight test producing state-of-the-art accuracy in dynamics; see the table describing several innovations also resulting from the work just described.
 
That second book, after a review chapter, begins where the first (pre-GPS) one left off.  It also (1)is used in tutorials and (2)has received testimonials from other instructors, as the URL shows.  Sources cited here, plus an online 1.5-hr tutorial, free to Inst-of-Navigation members, plus a “try-before-you-buy” 100-page excerpt available from this site, should be helpful to many.

 

At ION GNSS 2011 in Portland OR, Javad Ashjaee, James L. Farrell and others participated in a panel discussing the U.S. Dept. of Homeland Security’s concerns on the effects of GPS jamming and spoofing on our national critical infrastructure.

 

 As Dr. Todd Humphreys noted, U.S. Dept. of Homeland Security recently completed a risk assessment of the effects of GPS jamming and spoofing on national critical infrastructure. Some of us participated as subject matter experts in this assessment.

 

The DHS report, which is the most thorough one to date on this topic, has left many people saying “Yes, it’s a problem. Now what?”

This panel addressed the question “Now what?”

 

Topic: How do we secure civil GNSS?

 

Schedule

    • 8:30: Welcome and introduction: Moderator introduces topic, format, and ground rules
    • 8:40: Moderator introduces panelists
    • 8:45: Moderator frames the central question: “How do we secure civil GNSS?”
    • 8:50: Logan Scott
    • 9:00: Panel/audience response to Logan’s remarks
    • 9:10: Javad Ashjaee
    • 9:20: Panel/audience response to Javad’s remarks
    • 9:30: Mark Psiaki
    • 9:40: Panel/audience response to Mark’s remarks
    • 9:50: Questions from audience, discussion among panelists

10:05 — 10:35: Morning break

  • 10:35: Moderator welcomes audience and panel back, summarizes morning discussion
  • 10:40: Oscar Pozzobon
  • 10:50: Panel/audience response to Oscar’s remarks
  • 11:00:James Farrell
  • 11:10: Panel/audience response to James’s remarks
  • 11:20: Felix Kneißl
  • 11:30: Panel/audience response to Felix’s remarks
  • 11:40: Questions from audience; discussion among panelists
  • 12:10: Moderator and panelists offer concluding remarks
  • 12:15: Panel concludes

ION GNSS 2011

September 19-23, 2011 (Tutorials: September 19-20)
Oregon Convention Center, Portland, Oregon

 

 

 

POST-CONFERENCE UPDATE

A subsequent experiment conducted in Texas, attracting national attention at that time, became the topic of eMail communications among several professionals in the satnav community.  That sequence of communications resulted in a summary published in GPSWorld.

Life before GPS

Before GPS took over so many operations by storm (e.g., navigation,tracking, timing, surveying, etc.), designers had access to other — far less capable — provisions.  That condition forced our hands; to derive maximum benefit from what was available, we had to extract full information content from those provisions.  Now that GPS is subjected to challenges (aging, jamming, spoofing, etc.), some of those older methods are receiving increased scrutiny.  Recently I’ve received renewed interest in areas I analyzed decades ago.  Old publications from two of those areas are discussed here: 1) attitude determination and 2) nav integration.

“Attitude Determination by Kalman Filtering” is the title of three documents I had published.  In reverse sequence they are:
1) Automatica (IFAC Journal), v6 1970, pp. 419-430,
2) my Ph.D. dissertation (Univ. of Maryland, 1967),
3) NASA CR-598, Sept., 1966.
As indicated by the last reference, the work was the result of a contractual study sponsored by NASA (specifically Goddard Space Flight Center – GSFC – in Greenbelt Maryland).  I was working for Wetinghouse Defense and Space Center at the time.  The proposal I had written to win this contract cited my work prior to then, in both modern estimation (“Simulation of a Minimum Variance OrbitalNavigation System,” AIAA JSR v 3 Jan 1966 pp. 91-98) and attitude computation (“Performance of Strapdown Inertial Attitude Reference Systems,” AIAA JSR v 3 Sept 1966, pp. 1340-1347).  Let me hasten to explain the dates of those Journal publications: each followed its inclusion at an AIAA-sponsored conference, about a year earlier.

By the mid-1960s there was an appreciable amount of validation for Kalmen filtering applied to determination of orbits (that track record was convincing) but not yet for attitude.  A GSFC-sponsored investigation was then planned — the very first one for attitude using modern estimation methods.  GSFC management understandably wanted that contractual investigation to be performed by someone with demonstrable experience in both Kalman filtering and rotational dynamics.  In those days that combination was rare; the Westinghouse proposal was chosen as the winner.  At the time of that study, provisions realistically available for attitude updating consisted of mediocre-accuracy items such as magnetometers and horizon scanners– not bad but not spectacular either.
All that was of course before GPS weighed in, with its opportunity to reveal attitude from phase differences between antennas spaced at known distances apart.  That vastly superior capability effectively reduced earlier crude measurements to relative obscurity.  A directly parallel situation occurred in connection with navigation; the book that first tied together several facets of advancement in that field (integration, strapdown inertial, modern estimation with  acceptance of all data sources, multimode operation, extension to tracking, clear exposition of all commonly used representations of attitude, etc.) was”pre-GPS” (1976), and consequently regarded as less relevant. Timing can be decisive — that’s no one’s fault.

The item just noted — attitude representation — is worth further discussion here.  Unlike many other sources, the 1976 book offered an opportunity to use quaternion properties without any need to learn a specialized quaternion algebra.  A literature search, however, will point primarily to various sources (of necessity, later than 1976).that benefit from the superior performance offered through GPS usage. Again, in view of GPS as a game-changer, that is not necessarily improper.  Most publications on attitude determination don’t cite the first-ever investigation, sponsored by GSFC, for that innocent reason.

The word beginning that last sentence (“Most”) has an exception.  One author, widely quoted as an authority (especially on quaternions), did cite the original work — dismissing it as “ad-hoc” — while using an exact copy of the sensitivity matrix elements pubished in my original investigation (the three references cited at the start of this blog).
While I obviously didn’t invent either quaternions or the Kalman filter, there was another thing I didn’t do: fail to credit, in my publications, pre-existing sources that contributed to my findings. Publication of the material cited here, I’ve been told, paved the way for understanding and insight to many who followed. No one owes me anything for that; an analyst’s work, truthfully and realistically presented, is what the analyst has to offer.

It is worth pointing out that both the attitude determination study and the 1976 book cover another facet of rotational analysis absent from many other related publications: dynamics — in the sense of physics.  Whereas modern estimation lumps time-variations of the state together into one all-encompassing “dynamic” model, classical physics makes a separation: Kinematics defines the relation between position, rates, and accelerations.  Dynamics determines translational accelerations resulting from forces or rotational accelerations resulting from torques.

Despite absence of GPS from my early (1960s/70s) investigations, one feature that can still make them useful for today’s analysts is the detailed characterization of torques acting — in very different ways — on spinning and gravity-gradient satellites, plus their effects on rotational motion. Many of the later studies focused on the rotational kinematics, irrespective of those torques and their consequences. Similarly, the “minimal-math”approach to explaining integrated navigation has enabled many to grasp the concepts.  Printed testimony to that effect, from courses I taught decades ago, is augmented by more recent source noted near the end of another page shown on this site.