Blog Layout

1-sec Carrier Phase (again)

1-sec Carrier Phase (again)

 A comment challenged my video  .  I’m glad it included an acknowledgment that some points might have been missed. To be frank that happened a bunch; bear with me while I explain. First, there’s the accuracy issue; doppler &/or deltarange info provided from many receivers is far less accurate than carrier phase (sometimes due to cutting corners in implementation — recall that carrier phase, as the integral of doppler, will be smoother i f  processing is done carefully). Next, preference for 20-msec intervals will backfire badly. If phase noise at L-band gives a respectable 7mm = 0.7cm, doppler velocity error [(current phase) – (previous phase)] / 1 sec is (1.414) (0.7) = 1 cm/sec RMS for a 1-sec sequential differencing interval.  Now use 20 msec: FIFTY times as much doppler error! Alternatively if division is implicit instead of overt, degradation is more complicated: sequential phase differences are highly correlated (with a correlation coefficient of -1/2, to be precise). That’s because the difference (current phase) – (previous phase) and the difference (next phase) – (current phase) both contain the common value of current phase. In a modern estimation algorithm, observations with sequentially correlated errors are far more difficult to process optimally.  That topic is a very deep one; Section 5.6 and Addendum 5.B of my 2007 book address it thoroughly. I’m not expecting everyone to go through all that but, to offer fortification for its credibility, let me cite a few items:


* agreement from other designers who abandoned efforts to use short intervals
* table near the bottom of a
page on this site.

* phase residual plots from Chapter 8 of my 2007 book.


The latter two, it is recalled, came from flight test for an extended duration (until flight recorder was full), under severe test aircraft (DC-3) vibration.


For doppler updating from sources other than satnav, my point is stronger still. Doppler from radar (which lacks the advantage of passive operation) won’t get velocity error much below a meter/sec — and even that is an improvement over unaided inertial nav (we won’t see INS velocity specs expressed in cm/sec within our lifetime).


Additional advantages of what the video offers include (a) no requirement for a mask angle, (b) GNSS interoperability, and (c) robustness. A brief explanation:

(1) Virtually the whole world discards all measurements from low-elevation satellites because of propagation errors. But ionospheric and tropospheric effects change very little over a second; 1-sec phase differences are great for velocity information. Furthermore they offer a major geometry advantage while occurrence of multipath would stick out like a sore thumb, easily edited out .
(2) 1-sec differences
from various constellations are much easier to mix than the phases themselves. 
(3) For
receivers exploiting FFT capability  even short fragments of data, not sufficiently continuous for conventional mechanizations (track loops), are made available for discrete updates.
The whole “big picture” is a major improvement is
robust operation


The challenger isn’t the only one who missed these points; much of our industry, in fact, is missing the boat in crucial areas. Again I understand skepticism, but consider the “conventional wisdom” regarding ADSB: Velocity errors expressed in meters per second — you can hear speculative values as high as ten . GRADE SCHOOL ARITHMETIC shows how scary that is; collision avoidance extrapolates ahead. Consider the vast error volume resulting from doing that 90 seconds ahead of closest approach time with several meters per second of velocity error. So — rely on see-and-avoid? There are beaucoup videos that show how futile that is (and many more videos that show how often near misses occur — in addition there are about a thousand runway incursions each year). That justifies the effort for dramatic reduction of errors in tracking dynamics — to cm/sec relative velocity accuracy.


It’s perfectly logical for people to question my claims if they seem too good to be true. All I ask is follow through, with visits to URLs cited here. 

By James Farrell 09 May, 2023
A look back in time by James L Farrell, PHD - 2023
11 Apr, 2020
Apologies for little posting lately. Much activity included some with deadlines; this will focus primarily on the few years leading up to Covid.
11 Apr, 2020
GNSS Aided Navigation & Tracking
By James Farrell 30 Aug, 2018
Apologies for little posting lately. Much activity included some with deadlines; this will be limited to the past twelve months. In 2017 my involvement in the annual GNSS+ Conference again included teaching the satnav/inertial integration tutorial sessions with OhioU Prof. Frank vanGraas. Part I and Part II are likewise being offered for Sept 2018. Also...Read More
28 Jun, 2018
Once again I am privileged to work with Ohio University Prof. Frank vanGraas, in presenting tutorial sessions at the Institute of Navigation’s GNSS-19 conference. In 2019, as in several consecutive previous years, two sessions will cover integrated navigation with Kalman filtering.  Descriptions of the part 1 session and part 2 session are now available online. By way of...Read More
30 Apr, 2018
The Institute of Navigation’s GNSS+ 2018 Conference provides me the privilege of collaborating with two of the industry’s pillars of expertise. Ohio University Professor Frank van Graas and I are offering fundamental and advanced tutorials.  Then on the last day of the conference I’m coauthored with William Woodward, Chairman of SAE Int’l Aerospace Avionics Systems Division and hardware lead...Read More
24 Apr, 2018
A new SAE standard for GPS receivers is a natural complement to a newly receptive posture toward innovation unmistakably expressed at high levels in FAA and Mitre (ICNS 2018).  Techniques introduced over decades by this author (many on this site) can finally become operational. 1980s euphoria over GPS success was understandable but decision-makers, lulled into complacency, defined requirements in adherence...Read More
22 Mar, 2018
At April’s ICNS meeting (Integrated Communications Navigation and Surveillance) as coauthor with Bill Woodward (Chairman, SAE International Aerospace Avionics Systems Division), I’ll present “NEW INTERFACE REQUIREMENTS: IMPLICATIONS for FUTURE“.  By “future” we indicate the initiation of a task to conclude with a SAE standard that will necessitate appearance of separate satellite measurements to be included...Read More
16 Jul, 2016
A recent video describes a pair of long-awaited developments that promise dramatic benefits in achievable navigation and tracking performance.  Marked improvements will occur, not only in accuracy and availability; over four decades this topic has arisen in connection with myriad operations, many documented in material cited from other blogs here. 
12 Feb, 2016
For reasons, consider a line from a song in Gilbert-&-Sullivan’s Gondoliers: “When everybody is somebody, then nobody is anybody” — (too many cooks) For consequences, consider this question: Should an intolerable reality remain indefinitely intolerable? While much of the advocacy expressed in my publications and website have focused on tracking and navigation, this tract concentrates...Read More
More Posts
Share by: